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Abstract

Human amniotic epithelial cells (hAECs) derived from placental tissues have gained considerable attention in the
field of regenerative medicine. hAECs possess embryonic stem cell-like proliferation and differentiation capabilities,
and adult stem cell-like immunomodulatory properties. Compared with other types of stem cell, hAECs have special
advantages, including easy isolation, plentiful numbers, the obviation of ethical debates, and non-immunogenic
and non-tumorigenic properties. During the past two decades, the therapeutic potential of hAECs for treatment of
various diseases has been extensively investigated. Accumulating evidence has demonstrated that hAEC
transplantation helps to repair and rebuild the function of damaged tissues and organs by different molecular
mechanisms. This systematic review focused on summarizing the biological characteristics of hAECs, therapeutic
applications, and recent advances in treating various tissue injuries and disorders. Relevant studies published in
English from 2000 to 2020 describing the role of hAECs in diseases and phenotypes were comprehensively sought
out using PubMed, MEDLINE, and Google Scholar. According to the research content, we described the major hAEC
characteristics, including induced differentiation plasticity, homing and differentiation, paracrine function, and
immunomodulatory properties. We also summarized the current status of clinical research and discussed the
prospects of hAEC-based transplantation therapies. In this review, we provide a comprehensive understanding of
the therapeutic potential of hAECs, including their use for cell replacement therapy as well as secreted cytokine and
exosome biotherapy. Moreover, we showed that the powerful immune-regulatory function of hAECs reveals even
more possibilities for their application in the treatment of immune-related diseases. In the future, establishing the
optimal culture procedure, achieving precise and accurate treatment, and enhancing the therapeutic potential by
utilizing appropriate preconditioning and/or biomaterials would be new challenges for further investigation.
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Background

Human amniotic/amnion epithelial cells (hAECs) are de-
rived from the innermost layer of the term placenta clos-
est to the fetus, and they have been shown to have the
potential to be seed cells for allogeneic cell therapies.
Over the past 20 years, interest has been growing regard-
ing the utility of hAECs in regenerative medicine due to
their proliferative capacity, multilineage differentiation
potential, ease of access, and safety. Advances in stem
cell-based approaches have revealed that hAECs are
perinatal stem cells that possess embryonic stem cell-
like properties and the ability to be induced to differenti-
ate. As promising seed stem cell, hAECs have been
widely used to treat various diseases through transplant-
ation therapy. Evidence supported by animal studies has
revealed that hAECs show therapeutic potential for
treatment of many diseases, including neurological dis-
orders [1-4], lung injury [5, 6], liver injury [7], diabetes
[8], acute kidney failure [9], cardiovascular diseases [10],
wound healing [11], healing of stage III pressure ulcers
[12], intrauterine adhesion [13], and premature ovarian
failure (POF) [14]. Although hAECs have exhibited good
therapeutic efficacy, they possess differences in differen-
tiation potential, secretory function, and immunomodu-
latory activity under different conditions, producing
specific effects depending on their application. In this re-
view, we mainly examined the literature about the thera-
peutic potential of hAECs and summarized the different
repair mechanisms in injured tissues and disorders; we
also discussed the induced differentiation plasticity,
homing and differentiation, paracrine function, and im-
munomodulatory capacity of hAECs. Finally, we de-
scribed the current research strategies and proposed
new prospects for hAEC-based clinical applications in
the future.

Methods

Comprehensive literature searches using PubMed,
MEDLINE, or Google Scholar were performed to iden-
tify articles for review written in English focusing on the
biology of hAECs and the role of hAECs in injured tis-
sues, diseases, and regenerative medicine.

Biological characteristics of hAECs

hAECs are obtained from the amniotic membrane of
term placentas, which are discarded after birth. Thus,
hAECs are readily available, require no invasive proce-
dures for harvesting, and avoid relevant ethical issues.
Isolated hAECs express surface markers of embryonic
stem cells such as stage-specific embryonic antigen-3
and 4 (SSEA-3 and SSEA-4), octamer-binding transcrip-
tion factor-4 (OCT-4), and tumor rejection antigenl-60
and 1-80 (TRA1-60 and TRA1-80) [15]. Although
hAECs possess stem cell-like characteristics, they do not
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exhibit unlimited proliferation due to the lack of tel-
omerase activity and no risk of tumorigenesis in vivo
[16]. Moreover, hAECs have tri-mesodermal lineage dif-
ferentiation potential; they can produce osteogenic, adi-
pogenic, and chondrogenic lineages under appropriate
culture conditions [17]. Notably, hAECs have low ex-
pression levels of human leukocyte antigens (including
HLA-A, HLA-B, and HLA-C and HLA-DR), which are
key antigens involved in recipient rejection [1, 18]. A
study confirmed that intravenous administration of
hAECs did not result in hemolysis, allergic reactions,
toxicity, or tumor formation, which demonstrated that
hAECs were systematically safe [19]. Thus, hAECs are
considered a promising source of stem cells for regen-
erative medicine.

To safely and effectively use hAECs to repair the
function of injured tissues and treat diseases, it is es-
sential that they are of high quality. Currently, the
trypsin/EDTA technique is the most efficient for
obtaining viable hAECs for subsequent culture [20,
21]. The key aspects involved in the isolation of hAECs
with high yield, viability, and purity have been previ-
ously summarized [22]. Meanwhile, standard manufac-
turing and cryopreservation process were established
that resulted in the isolation of highly purified hAECs
with reproducible and high viability in accordance with
current good manufacturing procedure (GMP) require-
ments [23]. In addition, a study found that epidermal
growth factor (EGF) was a strong mitogen that pro-
moted the proliferation of hAECs by regulating the cell
cycle rather than inducing differentiation in the
process of culture in vitro [24]. Although primary
hAECs strongly expressed stemness-related genes for
OCT-4, Sox-2, and Nanog, these gene expression levels
gradually declined with an increase in passage number
[25]. Study revealed that cultured hAECs underwent
epithelial to mesenchymal transition (EMT) through
the autocrine production of TGF-beta (TGF-B) [26].
Moreover, TNF-alpha (TNF-a) and matrix metallopro-
teinase (MMP) could induce EMT of hAECs [27].
Therefore, researchers have tried to explore different
culture methods to maintain stemness and avoid EMT
occurrence. A study found that hAECs were cultured
in substitute serum medium (SSM) in which fetal calf
serum (FCS) was replaced by knockout serum replace-
ment (SR), contributing to maintain stem cell charac-
teristics for up to 4 passages [28]. Furthermore,
xenobiotic-free medium was used for the culture of
hAECs to eliminate the effects of growth factors [29].
Meanwhile, a serum-free protocol established for
hAEC isolation and culture resulted in better cell
growth than that achieved by a traditional culture sys-
tem with serum [19], which made the clinical applica-
tions of hAECs more feasible.
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Although the biological characteristics of hAECs could
be affected by the culture conditions and number of pas-
sages, they can be sufficiently expanded under certain
culture conditions and maintain reproducible biological
characteristics. Therefore, further understanding of the
biological characteristics of hAECs and improvement of
the isolation and culture techniques are important for
applying hAECs in regenerative medicine.

Induced differentiation plasticity of hAECs in vitro

One study indicated that hAECs were more efficiently
reprogrammed to assume a state of induced pluripo-
tency than adult fibroblasts [30]. An increasing number
of studies have found that hAECs display an extremely
high level of differentiation plasticity in vitro following
chemical induction, biological treatment, gene transfec-
tion, or coculture with other types of cells (Table 1).

A series of studies reported that hAECs were success-
fully induced to differentiate into hepatocyte-like cells
through a combined approach using dexamethasone,
hepatocyte growth factor (HGF), insulin-like growth fac-
tor (IGF), and other cytokines [31]; extracellular matrix
proteins together with a mixture of growth factors, cyto-
kines, and hormones or cocultured with muse hepato-
cytes [32]; a specific hepatic differentiation protocol [33];
and four-step hepatic differentiation [34]. In addition,
hAECs could respond to proangiogenic signals, form
capillary-like structures, and differentiate into hepatic si-
nusoidal endothelial cells (HSECs) in vivo [35].

With regard to pancreatic cells, hAECs were induced
to form three-dimensional (3D) spheroids and differenti-
ate into insulin-producing cells by culturing them on an
extracellular matrix [36]. When hAECs were treated
with activin A or nicotinamide combined with the tran-
scription factor pancreatic and duodenal homeobox-1
(PDX1), they differentiated into pancreatic lineage cells
[37]. Furthermore, hAECs differentiated into islet-like
cells expressing endocrine-related genes, including
PDX1, insulin, and glucagon, as a result of the addition
of nicotinamide plus betacellulin; importantly, the differ-
entiated islet-like cells secreted high levels of insulin in
response to high glucose exposure [38, 39]. In addition,
the potential for the differentiation of hAECs into pan-
creatic cells triggered by overexpressing PDX1 could be
strengthened with a mix of EGF and poly-L-ornithine in
the culture environment [40]. A study showed that
hAECs cocultured with submandibular gland acinar cells
in a double-chamber system differentiated into acinar
cells [41]. When hAECs were treated with nicotinamide
and N2 supplement, they differentiated into insulin se-
creting cells (ISCs) expressing PDX1 and beta2 micro-
globulin, meaning that they show potential for
application to cell therapy of type I diabetes [42].
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The fluid from specific tissues and organs could also
affect the process of hAEC differentiation. It was con-
firmed that hAECs cultured with medium containing 5%
human follicular fluid expressed the germ cell-specific
markers GDF9 and DAZL [43], and formed a follicle-
like structure [44]. By using serum substitute supple-
ment (SSS) medium, hAECs were induced to differenti-
ate into germ cells expressing DAZL, VASA, GDF9, and
ZP3 [45].

The ability of hAECs to differentiate into corneal
epithelial-like cells has been confirmed in many studies.
For example, hAECs were induced to differentiate into
corneal epithelial-like cells when they were cocultured
with human corneal epithelial cells (hCECs) [46] and
seeded onto rabbit corneal stroma [47] or by using cul-
ture media collected from spontaneously immortalized
human corneal epithelial cells (S-ihCECs) to replicate
the corneal epithelial microenvironment [48]. These
methods may be suitable for the reconstruction of the
corneal epithelium. Additionally, hAECs were able to
differentiate into conjunctival epithelium-like cells with
partial physiological function upon culture with
induced-denuded conjunctival matrix and conjunctival
homogenate [49].

The capability of hAECs to differentiate into neural
cells was affected by factors including serum, noggin,
basic fibroblast growth factor (bFGF), and retinoic acid
[50]. A recent study showed that hAECs were induced
to undergo neuronal differentiation by treatment with
rosmarinic acid [51]. hAECs differentiated into cortical
progenitor lineage cells and showed a cortical neuron
phenotype when treated with growth factors and small
molecules [52]. Additionally, hAECs were induced to dif-
ferentiate into Schwann-like cells (SCs) that exhibited
the morphological, phenotypic, and functional character-
istics of SCs when they were treated according to a co-
culture approach [53].

Osteogenic differentiation of hAECs was induced by
the upregulation of Runx2, osterix, alkaline phosphatase
(ALP), collagen I, and osteopontin (OPN) in vitro [54].
hAECs treated with either bone morphogenetic protein
(BMP)-7 or TGF-P1 expressed cartilage markers, includ-
ing aggrecan, Sox-9, CEP-68, and type II and X collagens
[55]. Interestingly, the osteogenic differentiation of
hAECs was also induced by mechanical stretching [56],
which means that changing the physical conditions may
be a new approach to affect the process of hAEC
differentiation.

Additionally, hAECs could form 3D structures and ex-
press the cystic fibrosis transmembrane conductance
regulator (CFTR) by adding small airway growth
medium (SAGM) [57]. When treated with activin A and
BMP-4, hAECs were able to express cardiac-specific
genes, including Nkx2.5 and alpha-actinin, indicating
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Table 1 The induced differentiation of hAECs in vitro
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Organ/focuses Cell types Phenotypes Inducing conditions References
Liver Hepatocyte-like cells Expressing hepatocyte-like cell Using a combined approach [31]
functional genes: albumin, CYP1AT1, of dexamethasone, HGF, IGF,
CYP1A2, c-met, and transcription and other cytokines
factors: HNF3, HNF4, C/EBPa, and
HNF1
Hepatocyte-like cells Expressing hepatic related Using extracellular matrix [32]
genes: albumin, ATAT, CYP3A4, substrates; cocultured with
3A7, 1A2, 2B6, and the mouse hepatocytes
asialoglycoprotein receptor 1
(ASGPR1)
Hepatic differentiation Displayed a similar hepatic Using a specific hepatic [33]
morphology; expressing specific differentiation protocol
hepatic genes: albumin, CYP7AT1,
and CYP3A4
Hepatic differentiation The formation of bile canaliculi; Using four-step hepatic [34]
secreting albumin; uptaking low- differentiation protocol
density lipoprotein and showing
inducible CYP3A4 and CYP2C9
enzymatic activities
Hepatic sinusoidal endothelial cells  Forming capillary-like structure Under proangiogenic [35]
in vitro and differentiate into conditions
HSECs in vivo
Pancreas Insulin-producing cells The formation of three-dimensional Culturing on extracellular [36]
(3D) spheroids; producing pancreatic ~ matrix
endocrine hormones; releasing
C-peptide under hyperglycemic
condition
Pancreatic lineage cells Expressing pancreatic endoderm Combination of transcription [37]
and progenitor genes: NKX6.1, factor PDX1 with activin A or
NeuroD1, and pancreatic lineage nicotinamide
genes: PDX1, SOX17, RFX6
Islet-like cells Expressing the endocrine- Using DMEM with different [38]
related genes: PDX1, ngn3, supplements and suspension
insulin, and glucagon; secreting culture
insulin in response to high
glucose exposure
Islet-like cell clusters Expressing pancreatic Adding nicotinamide plus [39]
development-related genes: betacellulin
PDX1, NKX6-1, NEUROGS3, PAX6,
INS, and GCG; insulin positive
and sensitive to glucose
Pancreatic cells Expressing pancreatic Inducing endogenous PDX1 [40]
differentiation related genes: expression, EGF, and poly-L-
NKX6.1, SOX17, RFX6, NEUROD!1, ornithine
and PAX4
Acinar cells Expressing a-amylase and mucins Cocultured with submandibular [41]
gland acinar cells using a double-
chamber system
Insulin secreting cells Expressing PDX1 and beta2 Treated with nicotinamide [42]
microglobulin; secreting insulin and N2 supplement
Ovary Germ cell-like cells Expressing germ cell-specific Medium supplemented with [43]
genes: GDF9, DAZL, and SCP3; 5% human follicular fluid
producing estradiol
Follicle-like structure Expressing germ cell-specific Medium supplemented with [44]
genes DAZL and GDF9; 5% human follicular fluid
secreting estradiol
Germ cell-like cells (diploid cells) Expressing germ cell-specific Cultured in medium containing [45]

protein DAZL, oocyte-specific
proteins GDF9 and ZP3, meiosis-
specific proteins DMC1 and SCP3

serum substitute supplement (SSS)
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Table 1 The induced differentiation of hAECs in vitro (Continued)
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Organ/focuses Cell types Phenotypes Inducing conditions References
Eyes Corneal epithelial-like cells Showing a similar morphology Cultured with human corneal [46]
to hCECs; expressing CK3/12, epithelial cells (hCECs) in a
CK14, CK19, and P63 Transwell coculture system
Corneal epithelial-like cells Expressing CK3/12 Seeded onto rabbit corneal [47]
stroma
Corneal epithelial-like cells Expressing CK3/12 Adding the conditioned medium [48]
of spontaneously immortalized
human corneal epithelial cells
(S-ihCECs)
Conjunctival epithelium-like cells Showed conjunctival epithelium Cultured with induced- [49]
phenotype; producing mu5ac denuded conjunctival matrix
and conjunctival homogenate
Nervous system  Neuronal differentiation Expressing neural cell markers Adding noggin, bFGF, and [50]
NSE and NeuN retinoic acid
Neuronal differentiation Upregulation of transcription factors ~ Treated with rosmarinic acid [51]
involving in neuronal differentiation
Cortical progenitors Expressing cortical neuron- Adding growth factors and [52]
specific proteins: TBR2, OTX2, small molecules
NeuN, and (-lll-tubulin
Schwann-like cells Exhibiting a typical bipolar or tripolar  Cocultured with Schwann [53]
morphology; expressing S-100; cells (SCs)
increasing the expressions of BDNF
and GDNF
Bone Osteogenic differentiation Increasing cellular ALP activity Cultured with classic osteogenic [54]
and extracellular mineralization; medium
expressing Runx2, osterix, ALP,
collagen I, and OPN
Cartilage differentiation Expressing cartilage markers: Treated with BMP-7 or TGF-f31 [55]
aggrecan, Sox9, CEP-68, and type
II'and X collagens; promoting
matrix synthesis
Osteoblasts Upregulating Runx2, ALP, and OPN Mechanical stretch [56]
Respiratory Polarized airway-like cells Forming 3D structures; expressing Cultured with small airway [57]
CFTR and possessing functional growth medium (SAGM)
jodide/chloride (I"/CI™) ion channels
Heart Cardiomyocyte-like cells Expressing cardiac-specific genes Treated with activin A and [58]
Nkx2.5 and alpha-actinin BMP-4
Skin Epidermal cells The presence of desmosomes; Cultured in air-liquid interface [59]

expressing CK18 and CK14

that hAECs have the potential to differentiate into cardi-
omyocytes [58]. In addition, the air-liquid interface
could stimulate the early differentiation of hAECs into
epidermal cells, which indicates their potential use for
skin regeneration [59].

Taken together, these studies indicate that hAECs have
strong potential to be induced to differentiate via changes
in culture conditions and methods. Inducing the differenti-
ation of hAECs toward a desired phenotype in vitro before
injection or transplantation will be an effective method for
replacing damaged cells for tissue regeneration.

Homing and differentiation of hAECs in vivo
In addition to culture conditions, the differentiation po-
tential of hAECs largely depends on the specific

organizational microenvironment in vivo following trans-
plantation. Grafted hAECs could migrate to injured tissue
and further differentiate into the appropriate cell type
under different conditions. Extensive animal studies have
confirmed the capacity of hAECs to differentiate into es-
sential and specialized cell types, which participate in the
functional recovery of damaged tissues (Table 2).
Generally, the initial presence of injury or damage
causes early cell death and loss of functional cells, and
then a series of secondary reactions occur, including
hypoxia, inflammation, ischemia, and dysfunction. Study
reported that hAECs not only expressed specific markers
of nerve cells, but also migrated along nerve fibers in the
corpus callosum [69]. A series of studies demonstrated
that hAECs exerted neuroprotective effects, possibly in
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Table 2 Homing and differentiation of hAECs in vivo
Diseases/focuses  Transplantation Species Outcome Repair mechanism References
method/dose
Parkinson’s disease  Injection of striatum Rats Ameliorating of apomorphine Differentiating into TH- [60]
(4x10* cells) -induced rotational asymmetry immunoreactive cells
Ischemic brain Injection of dorsolateral Rats Ameliorating behavioral Expressing neuronal progenitor  [61]
injury striatum (8 x 10° cells) dysfunction; reducing infarct marker (Nestin), neuronal marker
volume (MAP 2), astrocyte marker (GFAP)
Alzheimer's disease  Intracerebroventricular Mice Improving the spatial memory; Expressing stem cell-specific [62]
injection (1.2 x 10 cells) increasing acetylcholine markers OCT-4 and Nanog
concentration and the number of
hippocampal cholinergic neurites
Chronic liver failure  Intrasplenical injection Mice Liver was larger in size, softer, Differentiating into functional [34]
(2% 10° cells) and less nodular; increasing hepatocytes positive for albumin
serum albumin level
Lung injury Fetal jugular vein Sheep Reducing ventilation-induced Differentiating into type | [63]
(3% 10° cells) preterm lung injury, including and Il alveolar cells
less collagen, elastin, fibrosis,
normalized secondary-septal
crests
Premature ovarian  Intravenously injection Mice Promoting folliculogenesis; Differentiating into granulosa [64]
failure (2% 10° cells) repairing ovarian function cells expressing follicle-
stimulating hormone receptor
(FSHR)
Myocardial Injection of the infarcted  Rats Decreasing infarct size; Differentiating into [65]
infarction myocardium (1 x 10° cells) improving cardiac function cardiomyocyte-like cells
expressing myocardium-
specific marker myosin heavy
chain
Gland injury Intra-glandular injection Mice Restoring the morphology Differentiating into acinar- [66]
(1% 10° cells) and function of salivary gland like cells
Inner ear injury Injection of cochlea Hartley guinea  Cooperation in the regional Expressing cochlear fibrocyte [67]
(1x10° cells) pigs potassium ion recycling markers connexin 26 and Na-
K-adenosine triphosphatase
Achilles tendon In situ injection Sheep Improving tendon Differentiating into tenocytes [68]

injury

(10 10° cells)

microarchitecture and blood
vessel remodeling; contributing
to tendon regeneration

expressing collagen |

relation to neuronal differentiation. In a Parkinson’s dis-
ease (PD) model, hAECs migrated to and survived in the
injured striatum, and partially ameliorated apomorphine-
induced rotational asymmetry through differentiating into
TH-immunoreactive cells [60]. Another study found that
grafted hAECs migrated to the injured brain area via a
CXC chemokine receptor type 4 (CXCR4)-dependent
mechanism in ischemic stroke [70], and chemokines re-
leased by damaged tissues were a key mediator of trans-
planted stem cell tracking to the site of injury [71]. In
ischemic brain injury, grafted hAECs migrated into the is-
chemic area and expressed the neuronal specific marker
(MAP 2) and neuronal progenitor marker (Nestin), and
they significantly ameliorated behavioral dysfunction and
reduced infarct volume [61]. In transgenic mice with Alz-
heimer’s disease (AD), transplanted hAECs survived for at
least 8 weeks, and they were shown to migrate to the third
ventricle without immune rejection and to express the

stem cell markers OCT-4 and Nanog [62]. In

thioacetamide-induced chronic liver failure, engrafted
hAECs migrated into the liver and differentiated into
functional hepatocyte-like cells, improved the state of the
liver following chronic injury, and produced a high level of
serum albumin [34]. In addition, transplanted hAECs dif-
ferentiated into type I and II alveolar cells and mitigated
ventilation-induced preterm lung injury [63]. In
chemotherapy-induced POF, grafted hAECs were shown
to migrate to the injured ovaries and differentiate into
granulosa cells to restore folliculogenesis and ovarian
function [64]. In myocardial infarction, hAECs improved
cardiac function following transplantation by differentiat-
ing into cardiomyocyte-like cells [65]. In gland injury in-
duced by radiation, hAECs in the recipient glands
differentiated into acinar-like cells, resulting in morpho-
logical and functional restoration of the salivary gland
[66]. Additionally, transplanted hAECs could express con-
nexin 26 and Na-K-adenosine triphosphatase in the inner
ear [67]. In Achilles tendon injury, hAECs remained



Zhang and Lai Stem Cell Research & Therapy (2020) 11:439

viable within the host tendons and established an ac-
tive dialogue with endogenous progenitor cells, and
the differentiated hAECs displayed a tenocyte-like
phenotype and contributed to the recovery of the
function of Achilles tendon [68].

Although numerous studies have demonstrated that
hAECs can migrate and differentiate into the desired
type of cells to replace damaged cells, only a few studies
have reported the long-term functional integration of
engrafted hAECs in target organs. The limited homing
efficiency and the lack of long-term cell tracking ap-
proaches could be major reasons for the lack of func-
tional research on differentiated cells. In addition to the
efficacy of engraftment, several additional factors for
hAEC therapy need to be considered, including the
number of administered cells, the route of infusion, and
the biodistribution of cells post-transplantation. Al-
though tail vein injection is the most widely used trans-
plantation method to deliver cells into a host, most
engrafted cells are trapped in the lungs rather than the
target organs. For example, splenic injection was a more
efficient route of administration of hAECs for targeting
the liver than tail vein infusion [72, 73]. Therefore,
selecting an appropriate transplantation route is vital for
cell survival, differentiation of grafted cells, and the re-
covery of function.

Therefore, transplanted hAECs can be recruited to
damaged tissues and exert differentiation plasticity
in vivo based on the specific types of cells needed for re-
placement therapy to treat many diseases.

Paracrine potential of hAECs

Migration of grafted hAECs to injured tissues and re-
placement of damaged cells are thought to be the mech-
anisms behind the alleviation of acute and chronic
injury; however, there are several obstacles to cell trans-
plantation, such as poor survival and limited restoration
ability. Currently, accumulating evidence has demon-
strated that hAECs can provide a beneficial microenvir-
onment for cell survival and activate endogenous
mechanisms of tissue regeneration by secreting bioactive
cytokines and microvesicles. This is supported by evi-
dence that the injection of the conditioned media of
hAECs (hAEC-CM) could achieve a positive outcome
similar to that of cell transplantation, representing an ac-
ceptable alternative for stem cell-free biotherapy. As
early as 2000, a study showed that hAECs could
synthesize and release brain-derived neurotrophic factor
(BDNF), neurotrophin-3 (NT-3), and nerve growth fac-
tor (NGF), which play important roles in the early stages
of neural development in the embryo as well as the neu-
roprotective effect [74, 75]. Moreover, study also showed
that hAECs secreted considerable amounts of proangio-
genic, anti-fibrotic, and anti-inflammatory factors,
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including basic fibroblast growth factor (bFGF), vascular
endothelial growth factor (VEGF), angiogenin (AGN),
and insulin-like growth factor (IGF) [76]. The therapeutic
function of these bioactive secretory factors in various dis-
ease models has been studied and confirmed (Table 3).

For example, hAECs enhanced the survival of dopamine
(DA) neurons by producing biologically activated neuro-
trophins, such as BDNF and NT-3, and they counteracted
the loss of DA neurons in PD model mice [60, 77]. In cor-
neal injury, hAEC-CM injection promoted corneal wound
healing by reducing the infiltration of inflammatory cells
[78] and reducing corneal neovascularization [79]. hAEC-
CM injection protected ovaries against chemotherapy-
induced damage, enhanced the ovarian microenviron-
ment, and promoted ovarian vessel formation [80]. Fur-
ther study found that hAEC-secreting TGF-f1 played
important roles in protecting granulosa cells against apop-
tosis [81]. On the other hand, study has shown that
hAECs suppressed collagen production in human hepatic
stellate cells through the paracrine pathway [89], and
some important soluble factors such as MMP-2 and
MMP-9 secreted by hAECs played vital roles in anti-
fibrosis and promoting extracellular matrix (ECM) remod-
eling, especially in liver injury and fibrosis models [7, 82].
In a diet-induced murine non-alcoholic steatohepatitis
(NASH) model, administration of hAEC-CM reduced liver
fibrosis and hepatic inflammation, supporting the anti-
fibrotic properties of hAEC-CM [83]. Although hAECs
have been reported to secrete angiogenic factors, including
EGF, VEGF, AGN, and platelet-derived growth factor B
(PDGEB), there have been some contradictory reports on
their angiogenic effects to date. A study revealed that sig-
nificantly different protective effects were exerted by term
and preterm hAECs in vivo [90], which was related to the
differences in the angiogenic ability of hAECs isolated
from different gestational stages [91]. In addition, the im-
pact of hAECs on angiogenesis could be influenced by the
presence of inflammation in injured tissue [91]. Study
found that hAECs under hypoxic condition could secrete
the high levels of the human-origin proangiogenic cyto-
kines, contributing to myocardial tissue regeneration [10].
Thus, the impact of microenvironmental biological cues
on the paracrine function of transplanted hAECs should
be considered to identify the optimal times for cell
administration.

In addition, microvesicles or exosomes, as essential com-
ponents of the hAEC paracrine pathway, have attracted
much attention. Exosomes are small secretory vesicles that
are involved in intercellular communication via the transport
of bioactive cargo, including proteins, mRNA, microRNAs
(miRNAs), and organelles [92]. Importantly, study has dem-
onstrated that exosomes released by stem cells can effect-
ively transport proteins, mRNAs, and miRNAs to exert a
variety of effects on target tissues [93]. It has been shown
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Table 3 Paracrine function of hAECs in different diseases
Diseases/focuses Injection method Species Outcome Repair mechanism References
Parkinson'’s disease Injection of tegmentum of the Rats Enhancing the survival of DA; hAEC-CM (neurotrophins [77]
midbrain protecting the morphological such as BDNF and NT-3)
integrity of TH-positive neurons
against toxic insult
Corneal alkali injury Injection the dorsal bulbar Rabbits  Reducing the infiltration of hAEC-CM (anti- [78]
subconjunctival inflammatory cells; promoting inflammatory factors)
corneal wound healing
Corneal injury Topically application Mice Reducing corneal neovascularization; hAEC-CM (anti- [79]
suppressing corneal inflammatory inflammatory factors)
reactions
Premature ovarian Intraperitoneally injection Mice Promoting the formation of hAEC-CM (proangiogenic [80]
failure vascular; restoring ovarian function  factors)
Premature ovarian Ovarian injection Mice Promoting follicular development; hAEC-CM (TGF-B1; anti- [81]
failure inhibiting granulosa cell apoptosis;  apoptotic effect)
restoring ovarian function
Chronic liver fibrosis  Intravenously injection Mice Reducing collagen synthesis and hAEC-CM (anti-fibrosis, [82]
macrophage infiltration; inducing anti-inflammation)
macrophage toward M2 phenotype
Non-alcoholic Intraperitoneally injection Mice Reducing hepatic inflammation; hAEC-CM (anti-inflammation; [83]
steatohepatitis inhibiting liver fibrosis anti-fibrosis)
Myocardial infraction  Cardiac injection Rats Regenerating myocardial tissue; hAEC-secreting [10]
improving cardiac function proangiogenic factors
Wound healing Topically injection Rats Promoting the migration and hAEC-exosomes [84, 85]
proliferation of fibroblasts;
accelerating wound healing;
inhibiting scar formation
Wound healing Topically injection Mice Stimulating the migration and hAEC-exosomes (miRNAs) [86]
proliferation of fibroblasts;
accelerating wound healing
Idiopathic pulmonary  Intravenously injection; Mice Reducing lung inflammation hAEC-exosomes (anti- [87]
fibrosis intranasal instillation and fibrosis; improving tissue- inflammation; anti-fibrosis)
to-airspace ratio
Chronic liver fibrosis  Intravenously injection Mice Reducing collagen synthesis hAEC-EV (anti-fibrotic (82]
and macrophage infiltration; proteins)
inducing macrophage toward
to M2 phenotype
Premature ovarian Ovarian injection Mice Inhibiting the apoptosis of hAEC-exosomes [88]

failure

granulosa cells; repairing
ovarian function

(MiR-1246; anti-apoptosis)

that hAEC-derived exosomes (hAEC-exosomes) promoted
the migration and proliferation of fibroblasts, downregu-
lated collagen expression, and improved skin wound heal-
ing by inducing the formation of well-organized collagen
fibers in rats [84, 85]. Further study indicated that the ef-
fects of hAEC-exosomes were abolished by pretreating
hAEC-exosomes with RNaseA, which indicates that miR-
NAs carried by exosomes play important roles in promot-
ing wound healing [86]. In bleomycin-induced lung injury,
hAEC-exosome transplantation reduced inflammation
and fibrosis, and improved the tissue-to-airspace ratio by
increasing macrophage phagocytosis, reducing neutrophil
myeloperoxidase activity, and directly suppressing T cell
proliferation. Further analysis found that some specific
proteins comprising the cargo of hAEC-exosomes were
mainly enriched in the MAPK signaling, apoptotic, and

developmental biology pathways; however, the miRNAs
were enriched in the PI3K-Akt, Ras, Hippo, TGF-f, and
focal adhesion pathways [87]. Moreover, study also
showed that proteins in hAEC-derived extracellular vesi-
cles (hAEC-EVs) exerted anti-fibrosis function via modu-
lating collagen synthesis and macrophage polarization in
chronic liver fibrosis [82]. In addition, the target genes of
miRNAs in hAEC-exosomes were mainly enriched in the
phosphatidylinositol signaling system, PPAR signaling
pathway, and apoptotic process pathway, which are in-
volved in ovarian functional recovery mediated by hAEC-
exosome transplantation [88].

Taken together, these results demonstrated that
hAEC-derived cytokines and exosomes have important
repair potential in the treatment of various diseases, imi-
tating cell transplantation and avoiding the shortcomings
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of stem cell transplantation. Thus, exploring and identi-
fying the most effective secretome components, includ-
ing bioactive factors and extracellular vesicles/exosomes
secreted by hAECs, will provide new treatment strategies
for regenerative medicine.

Immunomodulatory properties of hAECs

In addition to the differentiation ability and paracrine
function of hAECs, their powerful immunomodulatory
properties also make their use in regenerative medicine
a more reasonable option than the use of other cell
types. Many studies have demonstrated that hAECs and
hAEC-CM exert multiple immunosuppressive activities
and anti-inflammatory properties. For example, hAECs
suppressed both specific and non-specific T cell prolifer-
ation, decreased pro-inflammatory cytokine production,
and inhibited the activation of stimulated T cells in vitro
[94]. Furthermore, hAECs prevented monocyte-derived
dendritic cell differentiation via cell-to-cell contact [95].
In addition, hAECs could produce a variety of immuno-
regulatory factors, including migration inhibitory factor
(MIF), TGE-B, interleukin-10 (IL-10), and prostaglandin
E2 (PGE2), contributing to suppress the function of in-
flammatory cells [96]. When hAECs were cocultured
with peripheral blood mononuclear cells (PBMCs) de-
rived from patients with unexplained recurrent spontan-
eous abortion, the proliferation of naive CD4 T cells was
significantly inhibited, and the production of Thl and
Th17 cytokines was reduced [97, 98]. hAEC significantly
attenuated the level of oxidative burst of neutrophils in
coculture system [99]. Additionally, hAEC-CM inhibited
the chemotactic activity of neutrophils and reduced the
proliferation of both T and B cells after mitogenic stimu-
lation [100].

These immunomodulatory properties have laid the
foundation for the use of these cells in treating inflam-
matory and immune-based diseases, and encouraging re-
sults have been obtained in different disease models
(Table 4). In ischemic stroke, hAEC transplantation sig-
nificantly reduced inflammation, leading to the recovery
of brain function [70] and the improvement of brain
function after intracerebral hemorrhage (ICH) by redu-
cing microglial activation and producing anti-
inflammatory factors [101]. In perinatal brain injury,
hAEC transplantation reduced apoptosis and astrocyte
areal coverage in the white matter, and increased the
density of total and activated microglia via the release of
trophic factors [102]. Moreover, hAECs mitigated fetal
brain inflammation and reduced white matter injury via
anti-inflammatory effects in the preterm ovine fetus, and
they reduced the number of activated microglial cells in
the white matter after repeated endotoxin exposure
[103] and lipopolysaccharide (LPS)-induced intrauterine
inflammation [104]. In multiple sclerosis, splenocytes
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from hAEC-treated mice showed a Th2 cytokine shift
with significantly elevated interleukin-5 (IL-5) produc-
tion [105]. In lung injury, a series of studies demon-
strated that transplanted hAECs repaired lung function
by decreasing macrophage and neutrophil infiltration, fi-
brosis, and collagen content; importantly, hAECs re-
quired normal host macrophage function to exert their
reparative effects [106]. Further study showed that
hAECs mediated lung function recovery by modulating
macrophage recruitment and polarization in a paracrine
manner [107]. Moreover, hAECs induced the maturation
of non-Tregs into FoxP3-expressing Tregs mediated by
TGE-B. Tregs are required for hAEC-mediated macro-
phage polarization and lung function recovery [108]. An-
other study also showed that the immunomodulatory
effects of hAECs on macrophage phagocytic activity and T
cell suppression are lipoxin-A4 (LXA4) dependent [109].
In addition, hAECs modulated the pulmonary inflamma-
tory response to ventilation in preterm neonatal lambs
and reduced acute lung injury [110]. Other studies re-
ported that leukocyte infiltration of the lungs was not re-
duced by hAECs; however, the levels of inflammatory
cytokines were reduced in intrauterine inflammation-
induced lung injury [111] and in hyperoxia-induced neo-
natal lung injury [112]. Moreover, hAECs reduced the
number of macrophages, dendritic cells, and natural killer
cells and improved the tissue-to-airspace ratio and septal
crest density in neonatal lung injury in a dose-dependent
manner, regardless of the route of administration [113]. In
early Achilles tendon defects, hAECs inhibited inflamma-
tory cell infiltration, activated M2 macrophage subpopula-
tion recruitment, and accelerated blood vessel and
extracellular matrix remodeling by secreting immunoreg-
ulatory factors [68]. hAECs restored ovarian function by
directly upregulating Treg cells in the spleen and reducing
the inflammatory reaction in injured ovaries by modulat-
ing the polarization and function of macrophages in a
paracrine manner [114]. In mice with experimental auto-
immune thyroiditis (EAT) and systemic lupus erythemato-
sus (SLE), hAECs prevented lymphocyte infiltration into
the thyroid and improved thyroid follicular function by re-
ducing the Th17/Treg cell ratio and increasing the pro-
portion of B10 cells [115]. In addition, grafted hAECs
accelerated diabetic wound healing and granulation tissue
formation, partially by inducing differentiation of macro-
phages toward an M2 phenotype and promoting neovas-
cularization in a paracrine manner [116]. In liver injury,
hAECs induced the differentiation of macrophages toward
an M2 phenotype, which was associated with a reduction
in established hepatic fibrosis [117].

These immune remodeling processes, which are medi-
ated by hAECs and soluble factors and extracellular vesi-
cles secreted by hAECs, are of substantial importance to
the regenerative process. Thus, hAECs have emerged as
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Diseases/focuses Transplantation method/ Species Outcome Repair mechanism References
dose
Ischemic stroke Tail vein injection (1 x 10°  Mice, Reducing brain infarcted volume and Inhibiting apoptosis and inflammation;  [70]
hAECs); saphenous vein marmosets functional deficits; promoting long- modulating immunosuppression
injection (5 x 10° hAECs) term functional recovery
Intracerebral Injection of cortex (1 x 10° Rats Reducing brain edema; ameliorating Suppressing the activation of [101]
hemorrhage hAECs) the neurologic deficits microglia; reducing the inflammatory
response
Perinatal brain injury Intravenously (1 x 10° Mice Reducing microglia apoptosis; Modulating microglia via releasing [102]
hAECs) increasing microglial phagocytic activity trophic factors
Fetal brain injury Injection of brachial artery — Ewes Reducing white matter injury; Inhibiting inflammation and apoptosis; [103, 104]
catheter (6 x 10° hAECs) mitigating associated brain injury reducing the number of activated
microglial cells
Multiple sclerosis Intravenously (2 x 10° Mice Reducing monocyte/macrophage Mediating immunosuppression via [105]
hAECs) infiltration and demyelination secreting TGF-B and PGE2; promoting
Th2 cytokine shift
Lung injury Intraperitoneally (4 x 10° Mice Decreasing neutrophil infiltration, Depending on the function of host [106]
hAECs) fibrosis, collagen content; repairing macrophage
lung function
Lung injury Intraperitoneally (4 x 10° Mice Reducing macrophage infiltration; Modulating macrophage polarization,  [107]
hAECs) increasing the number of M2 migration, and phagocytosis via
macrophage paracrine pathway
Lung injury Intraperitoneally (4 x 10° Mice Mitigating lung inflammation and Tregs are required for hAEC-mediated  [108]
hAECs) fibrosis macrophage polarization
Lung injury Intraperitoneally (4 x 10° Mice Reducing pro-inflammatory immune Mediating immunomodulation partly ~ [109]
hAECs) cells; preventing lung injury though LXA4
Preterm neonatal Intratracheally (90 x 10° Lambs Modulating the pulmonary Immunomodulatory effects [110]
lung injury hAECs) inflammatory response to ventilation;
reducing acute lung injury
Fetal lung injury Fetal jugular vein injection  Sheep Attenuating the fetal pulmonary Reducing inflammatory cytokines [111
(90 x 10° hAECs); fetal inflammatory response
intratracheal infusion
(18 10° hAECs)
Neonatal lung injury Intraperitoneally (4.5x10°  Mice Partially reducing hyperoxia-induced in-  Attenuating inflammation [112]
hAECs) flammation and structural lung damage
Neonatal lung injury  Intravenously; intratracheal  Mice Improving the tissue-to-airspace ratio Reducing macrophages, dendritic cells, [113]
infusion (5 x 10% 7.5 x 10% and the long-term of cardiorespiratory  and natural killer cells
1% 10° hAECs) function
Achilles tendon In situ filling (10 x 10° Sheep Inhibiting inflammatory cell infiltration;  Regulating inflammatory and [68]
injury hAECs) activating the M2 macrophage immunomodulatory response;
subpopulation accelerating blood vessel and ECM
remodeling
Autoimmune Intravenously (2 x 10° Mice Restoring ovarian function; Modulating macrophage function by~ [114]
ovarian disease hAECs) upregulating Treg cells; reducing the paracrine factors (TGF- and MIF)
inflammatory reaction
Experimental Intravenously (1.5 x 10° Mice Preventing lymphocyte infiltration into Modulating the immune cell balance  [115]
autoimmune hAECs); intravenously the thyroid; improving the damage of by downregulating the ratios of Th17/
thyroiditis; systemic (1.5 10° hAECs) thyroid follicular; reducing Treg cells; upregulating the proportion
lupus erythematosus immunoglobulin profiles of B10 cells
Diabetic wound Intradermally (1 x 10° Mice Promoting diabetic wound healing Reducing inflammation and [116]
healing hAECs) promoting neovascularization by
paracrine pathway
Liver injury Intravenously (2 x 10° Mice Reducing hepatic fibrosis Inducing M2 macrophage phenotype  [117]

hAECs)

valid candidates for potential use in treating inflamma-

tory and immune-based disorders.

Clinical trials of hAEC transplantation
On the basis of the preclinical animal studies mentioned
above, a series of clinical trials to assess the safety and

effectiveness of hAEC transplantation in the treatment

of various diseases have been registered at http://Clini-

calTrials.gov and are being conducted (Table 5).

Researchers conducted an early phase 1 clinical trial of

hAEC transplantation in patients with intrauterine adhe-
sion. Changes in the endometrial thickness, menstrual
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Table 5 Clinical trials of hAECs transplantation registered at http.//ClinicalTrials.gov

Study Disease Design Start date Status Phase Estimated Intervention ClinicalTrials.gov
enrollment identifier
1 Human Amniotic Intrauterine  Safety and March Not yet 1 20 Uterine cavity infusion ~ NCT03381807
Epithelial Cell in adhesion effectiveness 2018 recruiting (100 million)
Treatment of
Refractory Severe
Intrauterine
Adhesion
2 Human Amniotic Asherman’s  Safety and October Not yet 1 50 Biological amnion; NCT03223454
Epithelial Cells for ~ syndrome effectiveness 2017 recruiting biological amnion
Asherman’s loaded with hAECs (100
Syndrome million); intravenous
infusion (100 million);
intrauterine infusion
(100 million); hydrogel
loaded with hAECs (100
million)
3 A Therapeutic Trial ~ Primary Safety and June 2020 Recruiting 1 36 Bilateral ovarian artery NCT02912104
of Human Amniotic ovarian effectiveness infusion (2 x 107 cells)
Epithelial Cells insufficiency/
Transplantation for  premature
Primary Ovarian ovarian
Insufficiency failure/
Patients infertility
4 Human Amniotic Premature Safety and December Notyet  Not 20 Minimally invasive NCT03207412
Epithelial Cells ovarian effectiveness 2017 recruiting  applicable implantation (200
Treatment for failure million); intravenous
Ovarian infusion (100 million for
Insufficiency 3 times)
5 Human Amniotic Bronchial Therapeutic ~ October Recruiting 1 10 Endoscopic injection of  NCT02959333
Epithelial Cells for  fistula potential 2016 hAECs to fistula (3-5 x
Treatment of 107 cells)
Bronchial Fistula
6 Effect of Human Spastic Therapeutic ~ April 2017  Enrolling 1 10 Intrathecal injection NCT03107975
Amniotic Epithelial  cerebral potential by
Cells on Children palsy invitation
With Spastic
Cerebral Palsy
7 Treatment of Non- Non-union  Safety and December  Not yet 1/2 36 Transplant to non-union NCT03031509

union of Limb Frac- fracture efficacy 2017 recruiting

ture with Human
Amniotic Epithelial
Cells (hAECs)

site (50 million)

8 hAECs Are Leukemia Observational July 2020 Recruiting Not 30 Unknown NCT03759899

Preliminarily
Applied in
Allogeneic
Hematopoietic
Stem Cell
Transplantation

applicable

9 Human Amniotic Acute graft-  Safety and July 2020 Recruiting Not 27 Infusion of hAECs (1 x  NCT03764228

Epithelial Cells versus-host  efficacy
Prevent Acute disease
Graft-versus-host

Disease After

Hematopoietic

Stem Cell

Transplantation

applicable 106, 2% 10°% 5 x 10° cell/
kg)

blood volume, and pregnancy rate will be observed to
evaluate the safety and effectiveness of hAECs for treat-
ing intrauterine adhesion (NCT03381807). Another
similar study was designed and conducted by using

different interventional treatments with amnion, am-
nion loaded with hAECs, intravenous or intrauterine
infusion of hAECs, and hydrogel loaded with hAECs
to observe the therapeutic safety and effectiveness of
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hAECs in patients with intrauterine adhesion
(NCT03223454).

Our research team designed and conducted a phase 1
clinical trial to evaluate the safety and effectiveness of bi-
lateral ovarian artery infusion of hAECs into patients
with POF. To date, we have recruited subjects and com-
pleted two trials of hAEC treatment in POF patients,
and the results showed that hAEC transplantation in-
creased the levels of estrogen and AMH, decreased FSH
levels, and alleviated clinical symptoms (NCT02912104).
Another clinical study of the application of hAECs to
treat POF was also conducted via minimally invasive im-
plantation. The outcomes were measured, including the
ovarian volume and hormone levels (NCT03207412).

Investigators performed endoscopic injection of hAECs
into bronchial fistula and observed the recovery of bron-
chial fistula and the resulting systemic reactions
(NCT02959333). To evaluate the therapeutic potential of
intrathecal hAECs in children with spastic cerebral palsy,
functional status and spasticity were evaluated using the
modified Ashworth scale (MAS) (NCT03107975). Phase
1/2 clinical trials were designed, in which hAECs were
transplanted after debridement, and the efficacy and safety
were evaluated for the treatment of non-union fractures
(NCT03031509). In allogeneic hematopoietic stem cell
transplantation  (allo-HSCT) for the treatment of
leukemia, researchers tried to develop clinically applicable
hAEC products and to evaluate their preliminary applica-
tion in allo-HSCT (NCT03759899). Additionally, a dose
escalation study evaluating the safety and efficacy of
hAECs in preventing acute graft-versus-host disease after
HSCT was conducted (NCT03764228).

In addition, a clinical trial registered by Sievert et al. in
the Australian and New Zealand Clinical Trails Registry
(ACTRN12616000437460) was conducted to evaluate
the safety of intravenously administered hAECs for the
treatment of liver fibrosis. In this phase 1 clinical trial,
patients who received hAEC transplantation were closely
monitored in the first 24 h postinfusion, and long-term
follow-up included standard liver tests, transient electro-
graphy, and hepatic ultrasound [118]. Another study re-
ported that allogeneic hAECs could be safely infused
into babies with established bronchopulmonary dysplasia
(BPD), and there were no adverse events related to cell
administration [119]. Further clinical trials (ACTR
N12618000920291) were registered and conducted to
evaluate the effectiveness of intravenous hAEC infusion,
including a trial to assess the cytokine profile, respiratory
outcomes, and neonatal morbidity of infants [120]. In
addition, a phase I clinical hAEC therapy of ischemic
stroke (ACTRN12618000076279) was designed to deter-
mine the maximal tolerated dose (MTD) and assess cell
safety. Fifteen stroke patients will be recruited and
injected with hAECs by intravenous infusion. Safety and
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efficacy will be assessed by imaging and immunological
assays [121]. These clinical trials will help to determine
the safety and clinical benefits of hAEC-based therapy.

Prospects for hAEC-based therapy

The plasticity and therapeutic properties of hAECs are
summarized in this review. Enhancing the repair poten-
tial of hAECs and achieving precise treatment need to
be further considered.

To refine the manufacturing of hAECs and to
maximize their capacity to promote functional recovery,
there is an increasing need to improve our understand-
ing of the biology and repair mechanism of hAECs. In
consideration of special biological characteristics, pri-
mary hAECs have been widely used to repair damaged
tissues in animal models and preclinical research. How-
ever, there are still some bottlenecks, including isolation
protocols, EMT process, cell heterogeneity, and Meas-
urement methods which hinder the clinical transform-
ation of hAECs [122, 123]. Therefore, establishing a
reasonable and optimal isolation protocol and agreeing
upon strict definitions for hAECs will be necessary for
their future application in tissue regeneration. Second,
exploring new biology-guided approaches, including pre-
conditioning and genetic manipulation, will facilitate
their self-renewal and therapeutic properties of hAECs.
For example, a recent study reported that vitamin C pro-
moted the proliferation, migration, and self-renewal of
hAECs. Furthermore, hAECs treated with vitamin C
showed increased survival after transplantation and se-
creted a greater amount of growth factors, which im-
proved the therapeutic potential of hAECs in mice with
POF [124]. The plant-derived bioactive compound ver-
benalin significantly increased gene expression in
hAECs, contributing to the enhanced neural repair po-
tential of hAECs for AD [125].

On the other hand, paracrine function has been
regarded as the main underlying mechanism in hAECs
that mediates the recovery of function and immunomo-
dulation; however, many factors can affect the paracrine
potential of hAECs. A study revealed that primary and
expanded hAECs displayed different differentiation cap-
acity, immunosuppressive property, and paracrine effect,
which could be exploited for different cellular thera-
peutic applications [29]. To enhance the repair potential
and facilitate clinical application, some pretreatment ap-
proaches need to be further explored. A study showed
that prolonged exposure of hAECs to the inflammatory
cytokines interferon-gamma (INF-y) and interleukin-
beta (IL-1p) may result in enhanced expression and se-
cretion of immunomodulatory molecules, which are im-
portant in treating immune-related diseases [126].
Furthermore, a wide variety of studies should be con-
ducted to validate the potential of hAEC-exosomes, in
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which miRNAs and proteins are contained as cargo, and
to optimize culture conditions to obtain the optimal
secretome with therapeutic value for application.
Currently, combining biomaterials with hAECs has be-
come a new approach to prolong and strengthen their
beneficial effects. Studies have demonstrated that bioma-
terial scaffolds could contribute to positively modulating
the inflammatory response in the tissue and stimulating
tissue regeneration. For example, the implantation of
hAECs loaded on hydroxyapatite/p-tricalcium phosphate
scaffolds not only improved bone regeneration by direct
participation but also reduced the early host immune re-
sponse to the scaffolds [54]. Moreover, biomaterial scaf-
folds supported hAEC survival and differentiation after
transplantation and provided a good microenvironment
for tissue regeneration and functional recovery [127].
The latest study reported that poly(lactide-co-glycolide)
(PLGA) could be used as a tendon biomimetic fleece for
enhancing the differentiation and immunomodulation of
transplanted hAECs in injured tendons [128]. Therefore,
in vivo and long-term preclinical studies are needed to
achieve translation from the bench to the bedside.

Conclusions

Regenerative medicine is a broad field of medicine in
which stem cells are used to regenerate the function of in-
jured organs and tissues. hAECs are easy to isolate, have
low immunogenicity, and lack ethical concerns; thus,
hAECs have extremely important therapeutic potential in
regenerative medicine. The current review helps to further
explain the different mechanisms of action for hAEC-
based cell therapy in treating various diseases. Import-
antly, the effects of hAEC paracrine function on the in-
jured tissue microenvironment and the maintenance of
balance of immunosuppression in recipients were crucial
to the process of functional recovery. In the future, enhan-
cing the therapeutic potential and developing new clinical
protocols are needed for the application of hAEC-based
strategies in regenerative medicine.
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